

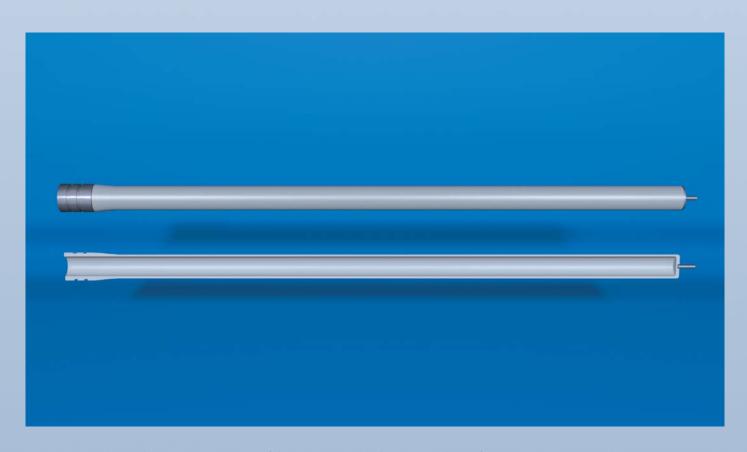
THINK > Filter Technology

Seamless Standard Filter

GKN Sinter Metals Filters, the leading manufacturer of porous sinter metal products, offers a variety of solutions to fulfill customer requirements.

We are familiar with various applications in almost every industrial branch.

GKN's filter cartridges are manufactured by an isostatic compaction process, which results in outstanding homogenous pore size distribution with excellent mechanical properties.


Seamless designs can be produced up to 1,850 mm (72.8") length and 320 mm (12.6") OD. Larger elements (like for cross flow or triad design application) will be assembled in our certified in-house welding shop.

GKN Standard Liquid Filter Design for outside in filtration

We offer custom made solutions that may be fitted into your existing plant without any modifications.

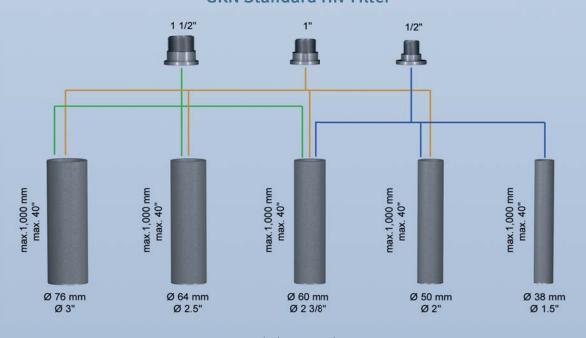
Further information – including 3D laser sintering – are available on GKN's homepage www.gknpm.com/filters.

XL Filter Cartrige - Possible 100 % complete seamless design up to 72" porous

GKN Double Open End (DOE) and Hex-Nippel (HN) filters are 1:1 interchangeable with most other suppliers media.

Applications

Sparging	(Hot) gas filtration
Carbonisation	Liquid filtration
Catalyst recovery	Steam filtration
Catalyst retainer	Slurry oil filtration
Flame arrestors	Silencing
Flow restrictors /	Wine filtration
Semiconductor industry	Gas stripping
Fluidizing / bulk handling	Oxygen filtration
Gas filtration	<u> </u>


72" seamless inside - out filter

Advantages

- High temperature resistance
- High corrosion resistance
- Nickel based alloys available
- High mechanical strength

- Excellent back pulse performance
- Design freedom
- Seamless filter body
- Cryogen application possible

GKN Standard HN-Filter

Fitting Matrix

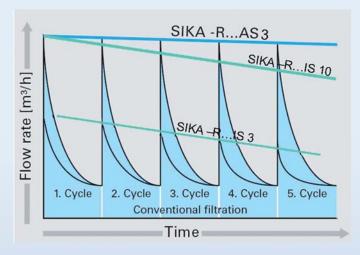
Further to our fully customized solutions with diameters available from 4 - 320 mm (0.15"-12"), we can now offer shorter delivery times for the most common standard dimensions (acc. to above sketch) made of AISI 316L.

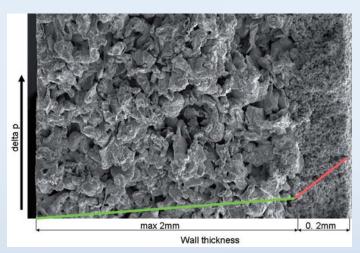
Standard Powder Materials

Mate-	Name	MatNo.	SIK	A-				Fe	Cr	Ni	С	Мо	Si	Miscellany	Max. Temp	erature °C	Keyword
rial		R FIL B					1	Reducing Oxidizing		Oxidizing							
			IS	AX	AS				in weight- %								
High alloyed material	AISI 304L	1.4306	Х	Х	х			Bal.	18.0-20.0	8.0-12.0	≤0.03	≤0.1	≤2.5	-	600	500	Standard for food
	AISI 316 L	1.4404	Х	х	х			Bal.	16.0-18.0	10.0-14.0	≤0.03	2.0-3.0	≤2.5	-	540	400	application
						х									380	320	
	AISI 904L	1.4539	х	х	х			Bal.	19.0-21.0	24.0-26.0	≤0.03	4.0-5.0	≤2.3	Cu 1.0-2.0	600	500	Resistant against sulphuric, phosphoric and hydrochloric acid
宝	AISI 310	1.4841				х		Bal.	24.0-26.0	19.0-22.0	≤0.20	-	≤2.5	-	800	600	Heat resistant
Nickel based alloys*	Hastelloy C22	2.4602	х		х			2.0-6.0	20.0-22.5	Bal.	≤0.03	12.5-14.5	≤0.5	W 2.5-3.5 Co ≤2.5	650	650	Corrosion resistant with various agressive media. Duration ap- plication at > 400 °C possible.
	Hastelloy C 276	2.4819	Х	Х				4.0-7.0	14.5-16.5	Bal.	≤0.03	15.0-17.0	≤0.8	W 3.0-4.5 Co ≤2.5	650	650	
	Hastelloy X	2.4665	х	Х				17.0-20.0	20.5-23.0	Bal.	≤0.15	8.0-10.0	≤1.0	W 0.2-1.0 Co 0.5-2.5	930	800	
kel b	Inconel 600	2.4816	Х	х	х			6.0-10.0	14.0-17.0	Bal.	≤0.03	-	≤2.5	-	700	600	
Nic	Inconel 625	2.4856	Х					≤4.00	20.0-24.0	Bal.	≤0.08	8.0-10.0	≤2.3	Nb 3.0-4.0	650	650	
	Monel 400	2.4360	х	Х				≤1.0	•	≥63.0	≤0.05	-	≤1.0	Cu 28.0- 34.0	500	500	Resistant against Cl- containing media
Bronze	CuSn 11	2.1052 mod.					Х	-	-	-	-	-	-	Sn 10.0- 11.5 Cu bal.	300	250	Typically used for hydraulic and pneumatic
Tita- nium	Ti	-	х	х				-	-	-	-	-	-	Ti > 99 %	500	500	Medicine, acids and electrolysis
Other	Other materials on request																

Not all raw materials are in stock. Materials for fittings on request.

Due to powder metallurgy process, there are slight deviations in the element composition compared to the material standards. * Nickel based AX-products only after consultation. Not all dimensions feasible.

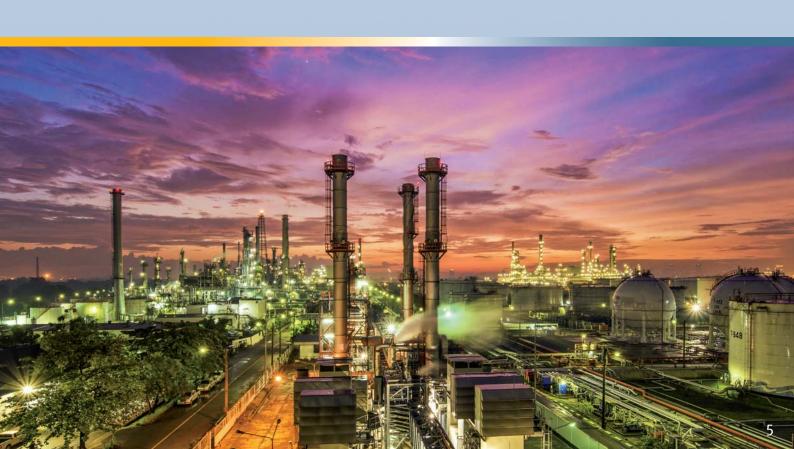

GKN Filter Grades


SIKA-R	0.1	AS
SIKA-R	0.3	AS
SIKA-R	0.5	IS
SIKA-R	0.5	AS
SIKA-R	1	IS
SIKA-R	1	AS
SIKA-R	2	AS
SIKA-R	3	IS
SIKA-R	3	AS
SIKA-R	5	IS
SIKA-R	8	IS
SIKA-R	10	IS
SIKA-R	15	IS
SIKA-R	20	IS
SIKA-R	30	IS
SIKA-R	50	IS
SIKA-R	80	IS
SIKA-R	100	IS
SIKA-R	150	IS
SIKA-R	200	IS

Filter grades available are in a range from 0.1 μm to 200 μm

ASsymmetric membrane SIKA R...AS out-in-filter

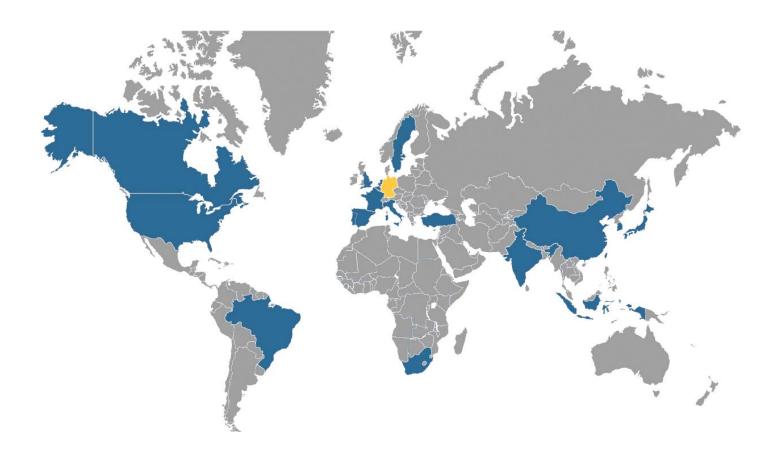
Advantage: increased lifespan


Advantage: decreased pressure drop

SIKA-R AS membranes show up a double-layer construction with a thin filter-active membrane applied on top of a coarse carrier material.

Filter grades available are in a range from 0.1 µm to 3 µm.

SIKA-R AS can be manufactured of all standard alloys available, membrane and carrier are always made of the same alloy.


Main field of application for metallic membranes are catalyst recovery (Raney Nickel, Pd-, Pt-catalysts) and gas filtration finer than 5 µm.

Basic information for designing a filter

1. Customer's information										
		Email: Phone: Mobile:								
2. The planned application of the SIKA element?										
ncing 🗌 Spa	arging [
3. What kind of gas or liquid will flow through the SIKA element?										
Operation Dynamic v Operation temp Operation fl re before the SIKA o pressure drop of cle	density viscosity perature low rate element ean filter									
ust be retained	by a SIK	A element?								
Shape of the	particle _									
element be app	olied?									
Disc □ 0	ther \Box	_								
Q	uantity _									
6. Short description of the process:										
GKN Sinter Metals Filters GmbH Phone: +49 (0) 2195 609 0 Dahlienstraße 43 42477 Radevormwald Email: filters@gknpm.com GERMANY www.gknpm.com/filters										
	ication of the SI alizing	ication of the SIKA elementalizing	Email: Phone: Mobile: Cation of the SIKA element? Others							

Our locations:

Head Quarter and Manufacturing

Local Sales Partners

GKN Sinter Metals Filters GmbH

Dahlienstraße 43 42477 Radevormwald GERMANY

Phone: +49 (0) 2195-609-0 E-Mail: filters@gknpm.com www.gknpm.com/filters

