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ABSTRACT

P/M parts generally require machining methods and specific tools designed to address the inherent porosity of the
finished part. The composition and microstructure of sintered parts often causes machining problems and requires
additives to enhance machinability. Currently, conventionally produced ferrous P/M parts have an average green
strength of approximately 1500-psi. Recent technological advances with organic binders and lubricants, combined with
improved compaction technology, have made it possible to produce P/M parts with enhanced green strengths. Enhanced
green strength makes it possible to machine materials in the green state, thereby reducing manufacturing time and
production costs. This paper examines green drilling by applying several machinability and material evaluation methods.

INTRODUCTION

One of the advantages of powder metallurgy (P/M) is the ability to fabricate high quality, complex parts to close
tolerances in an economical manner. The ability to improve material utilization has been a key to the success of P/M.
Although the process has excellent shape-making capabilities; some difficulty may be encountered if secondary
machining operations are required. For example, accurate surfaces required for assembly may need to be turned or
milled, and any holes or other re-entrants perpendicular to the compaction direction must be drilled. Intermittent cutting
forces during the machining process, which result from the inherent porosity of P/M materials, can result in concentrated
high stress and strain rates. Additionally, the advent of sinter-hardening P/M steels results in particle hardness values
exceeding 40 HRC? Such extremely hard areas can dull cutting surfaces quickly. These factors, plus friction between the
tool and the workpiece, cause local heating which is difficult to control when machining in the sintered condition. The
use of liquid coolants to combat localized heating during machining is undesirable for P/M parts due to the inherent
porosity. Until recently, machinability enhancement of P/M steels could only be accomplished with additions of agents
such as sulfur and manganese sulfide.

Recent trends to achieve higher density levels and higher production rates indicate the need for further improvements in
machinability. Achievable density is an extremely important factor in the performance of powder metallurgy
components. Generally, as density is increased almost all-material properties, including strength, magnetic performance
and corrosion resistance, are improved; however, many high performance materials tend to exhibit extremely poor
machinability in the sintered state. Additions of machinability agents are not ideal because they adversely affect powder
properties, influence dimensional change characteristics and compromise-sintered properties.

A patented material and compaction technology, ANCORDENSETM*, achieves sintered densities of 7.25 g/cm3 to 7.55

g/cm3 using conventional compaction pressures and sintering temperatures2,3,4,5 The ANCORDENSE technology
involves the use of a specifically engineered lubricant/binder system, which acts to prevent segregation of the powder
and increase lubrication of the die wall during compaction. The compaction process is carried out at an elevated
temperature in the range of 265°F to 310°F with the lubricant/binder system designed to operate optimally in this
temperature range. As well as providing high-density parts with outstanding physical properties, significant
improvements in green strength and reduced ejection force from the die are realized. These are significantly higher green
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strengths than can be obtained with conventionally produced P/M materials. Parts produced by the ANCORDENSE
process are much less fragile in the green state than conventionally-produced parts, and can be subjected to significantly
more handling prior to the sintering process without breaking or chipping. With such enhanced strength, also comes the
opportunity to machine powder metallurgy components in the green state.

This paper evaluates the green machining process and develops guidelines for this type of machining. Drilling is the
machining operation that will be examined, although other processes such as turning and milling have been
demonstrated to be feasible?

A diagram of drill features is shown in Figure I with the relevant nomenclature detailed below:

• Drill point - the cutting edge of the drill
• Flutes - the grooves that are formed in the body of the drill to allow fluids to reach the
• point and remove chips from the workpiece
• Land - the remainder of the outside of the drill body after the flutes are cut
• Helix angle - the angle that the leading edge of the land makes with the drill axis
• Point angle - the angle between the drill lips
• Thrusting force - the force that arises from the cutting action along the lips and the
• extrusion and cutting forces acting at the chisel edge
• Web - the central portion of the drill body that connects the lands

PROCEDURE

A premix composition of Ancorsteel®' 85HP, 2.0% nickel, 0.4% graphite, 0.6% lubricant/binder was prepared using the
ANCORDENSE process. Because of its high sintered strength and good ductility, this material is considered excellent
for many high performance applications; however, the poor machinability the composition exhibits in the sintered
condition makes it a good candidate for green machining? The machinability of the material was evaluated by drill
testing.

Testing

ANCORDENSE processed test specimens were prepared using a 1000 ton hydraulic press. Part geometry and
compaction variables are listed in Table I:

Table I - Green Machining Test Variables

Test Piece Diameter 4 inches (102 mm)
Test Piece Height 1.25 inches (31.75 mm)
Test Piece Density 7.33 g/cms

Compaction Pressure 50 tsi (690 MPa)
Powder Temperature 290°F (145°C)
Compaction Temperature 290°F (145°C)

__________________________________________________________________________________________
'ANCORDENSE is a trademark of the Hoeganaes Corporation.
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Drill test parameters are listed in Table II. A standard high speed steel (HSS) 118o drill was chosen as a reference with
the remaining drills being variations of the reference in terms of surface finish, flute configuration and point angle.
Preliminary laboratory testing indicated that as drill speed and feed rate were increased, the surface finish of the test
pieces improved. Based on these observations, drill testing was conducted at a set drill speed of 3285 rpm and feed rate
of 0.012 inch/revolution. With these parameters, drilling a through hole of the designated height can be completed in
approximately two seconds.

The test procedure involved drilling five holes per piece with drills A through G listed in Table II.
The following was examined:

1) Force exerted on workpiece
2) Dimensional stability

Force Exerted on the Workpiece

To determine the drilling force, a load cell was placed under the test pieces and the peak force during the drilling process
was recorded. Photographs of the support fixture are shown in Figure 2. The load cell readings are plotted in Figure 3.

Drills C, E, and F exerted the lowest force on the workpiece. One common factor between these drills is that they are
designed to enhance chip evacuation. Drills C and E accomplished this with polished surfaces. Chip evacuation is
enhanced further with drill E by a flute design that has the heel side rolled over to allow more space for chips. Drill F
has a flatter chisel area and a split point, which makes the drill more prone to fracture the material into smaller, more
manageable pieces. The results indicate that efficient removal of powder from the hole during the drilling operation is an
important factor in reducing drilling forces.

The geometry of a split point drill also is a factor. When grinding a split point, the clearance face of each cutting edge is

given a sharp secondary relief (typically 55°) to the center of the chisel edge, thus creating a secondary cutting lip
(Figure 4). The additional cutting edges, and the resulting reduction in width of the original chisel edge, act to reduce
thrusting forces. 7.8

Dimensional Stability

It was important to determine to what extent distortion of the drilled holes may occur during the sintering process. Test
pieces were drilled in the green condition and sintered at 2050°F (1120°C) for 30 minutes in a 75% H2 % N2
atmosphere. The diameter of the entrance holes. Preliminary evaluation indicated that, within the measuring resolution
of a stereomicroscope, sintering the test pieces resulted in only minimal distortion of the drilled holes. Each premix
composition and density combination will result in a unique hole distortion characteristic which is dependent upon
material chemistry and part geometry.

Physical Appearance of Surface

For green machining to be a viable process, it is necessary for the drilled holes to be free of any areas of chipping or
cracking. The holes made by the drills that exerted the lowest force on the workpiece were inspected with a

stereomicroscope. Visual inspection revealed that the sample drilled with drill C, the HSS-90°- polished drill, showed
areas of chipping or breakout at the exit site. Clean exit surfaces with no signs of breakout were realized with the
following drills:
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D) HSS-118° High helix angle

E) HSS-118° Parabolic geometry

F) HSS-135° Split point

The results can be explained by examining the drilling process. When a drill with a low point angle breaks through a
work surface at the exit hole, the tool spindle tends to lunge and overfeed. Speeds and feed rates are temporarily
unbalanced and the result is that the drill is temporarily unbalanced. The drill is not able to shear the last bit of material;

it is pushed out instead (Figure 6). As the drill angle is increased, the amount of material that is pushed out decreases.?

The results indicate that for green machining of a warm compacted material, a minimum drill angle of 1 18° is needed to

achieve a clean exit surface, and as the point angle is increased above 118° the chance of obtaining a clean exit surface
increases.

During preliminary testing, the best results in terms of force exerted on the workpiece and surface appearance were

achieved with drill E (HSS-118° parabolic geometry) and drill F (HSS-135° split point). Based on these results, it was
necessary to determine which drill characteristic, a split point or a parabolic geometry, was the over-riding factor for
successful green machining. Drills with both characteristics were obtained in a standard condition and a with cobalt
coated surface. Approximately thirty holes per piece were drilled with drills E,F,H and I (listed below) and load cell
readings were recorded to determine if any reduction of the force exerted on the workpiece could be realized. These
results are plotted in Figure 7.

Types of drills:

E HSS-118° Parabolic geometry

F HSS-135° Split point

H HSS-135° Split point-wide land parabolic flute

I      HSS-135° Split point-wide land parabolic flute-cobalt coated

The results indicate that the highest load cell readings were realized with drill E, while the performance of drills H and I
was on par with that of drill F. This discrepancy again can be explained by the difference in chisel angle. The data
indicates that as expected the force explained by the difference in chisel angle. The data indicates that as expected the

force exerted on the workpiece decreases as the drill chisel angle is increased to 135°, although acceptable results can be

achieved with an angle of 118°.

SEM Analysis

Scanning electron microscopy (SEM) analysis was done with samples from drills E, F, H, and I to help quantify the test
results.

Internal Surface of Drilled Holes

SEM photographs of the internal surface of the drilled holes are shown in Figures 8 and 9. The photographs indicate that

the best surface finish is achieved with drill F, (HSS-135° split point) and the poorest with drill I (HSS-135° split point-
wide land parabolic flute-cobalt coated).

The hole produced by drill E (118° parabolic flute geometry) shows a fairly clean surface; however, when the entire area
is scanned, there are a fair number of pitted areas present in this sample. This is most likely due to the higher thrusting
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force associated with the lower angle drill.

The hole produced by drill F (135°split point) shows striations on the cutting surface which are fine and evenly
distributed. Closer examination reveals only very small areas of pitting where it appears that powder particles have been
pulled out from the internal surface. No areas of micro cracking were observed.

No benefit in the surface finish was realized with drill H (HSS-135° split point-wide land parabolic flute). This was
likely due to the land thickness. It is felt that the enhanced land thickness negated any positive effects of the parabolic
geometry.

The photographs of the hole produced by drill I (HSS 135° split point-wide land parabolic flute-cobalt coated) appear
very rough and contains large, deep pits associated with powder being pulled from the surface. The metal appears to
have smeared, which indicates that using the selected drill speed and feed rate, drill I was not efficient at cutting the
material. High magnification photographs of this sample also show possible areas of micro cracking. This seems to
indicate that drill coatings such as cobalt may not be beneficial for green machining.

Powder Removed from the Hole During Drilling Process

SEM photographs of the powder that was removed from holes during the drilling operation can be seen in Figures 10
and 11. The Low magnification photographs show a high degree of particle irregularity associated with the powder
removed by drill E (Figure 10) and drill I (Figure 11). The particle size distribution for these samples is very wide and
they contain a higher percentage of large particles than the powder removed by drill F (Figure 10) and drill H (Figure
11). This can be explained by examining the drill geometry. As was previously stated, a flatter point such as that for the

135° split point drills, is more effective at controlling chip size because it fractures the material into smaller pieces. It is
felt that the cobalt coating on drill I negated any beneficial effects of the flatter chisel point.

Each sample contained a small percentage of powder particles with visible areas of shearing. The powder removed by

drill E (HSS-135° split point) contained fewer sheared particles than the other samples that were examined. The powder
also shows less intense surface striations, which is indicative of a lower drilling force.

Overall, the SEM analysis indicates that split point geometry is the most important drill characteristic for successful
green machining.

Machinability versus green strength

The effect of green strength level on successful green machining was evaluated. Mixes were prepared those provided
green strengths ranging from approximately 4000 psi to 9500 psi. Property information for the various test materials is
detailed in Table III.

The test mixes (M1 through M5) were prepared in the laboratory using various proprietary lubricant/binder

combinations. It is important to note that although the mixes have green densities ranging from 7.15 g/cms to 7.37

g/cm=, the relationship between green density and green strength is not direct; rather, the green strength is a function of
the organic lubricant and material processing. The goal was to determine whether green strength or the lubricant/binder

system was the prevailing factor for successful green machining. Drill testing was done with a HSS-135° split point drill
with a feed rate of 0.012 inches/revolution and drill speed of 3285 rpm. A drill size of 0.1875 inches was used with a
corresponding sample size of 3.5 x 0.5 x 0.5 inches. SEM photographs of the internal surface of the drilled holes can be
seen in Figures 12 through 14.
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More testing needs to be done to determine if the drilling guidelines from preliminary laboratory testing can be
transferred successfully to a production setting.
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